Cyclic Quantum Dilogarithm and Shift Operator

نویسنده

  • Bo-Yu Hou
چکیده

From the cyclic quantum dilogarithm the shift operator is constructed with q is a root of unit and the representation is given for the current algebra introduced by Faddeev et al. It is shown that the theta-function is factorizable also in this case by using the star-square equation of the Baxter-Bazhanov model. PACS. 11.10 Field theory. PACS. 02.10 Algebraic methods. PACS. 05.50 Lattice theory and statistics. This research was partially supported by the China center of advanced science and technology. email address: [email protected] mail address 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 94 10 04 5 v 1 8 O ct 1 99 4 Weyl Pair , Current Algebra and Shift

The Abelian current algebra on the lattice is given from a series of the independent Weyl pairs and the shift operator is constructed by this algebra. So the realization of the operators of the braid group is obtained. For |q| = 1 the shift operator is the product of the theta functions of the generators w n of the current algebra. For |q| = 1 it can be expressed by the quantum dilogarithm of w...

متن کامل

A proof of the pentagon relation for the quantum dilogarithm

1 Introduction The quantum dilogarithm function is given by the following integral: Φ h (z) := exp − 1 4 Ω e −ipz sh(πp)sh(πhp) dp p , sh(p) = e p − e −p 2. Here Ω is a path from −∞ to +∞ making a little half circle going over the zero. So the integral is convergent. It goes back to Barnes [Ba], and appeared in many papers during the last 30 years: • The function Φ h (z) is meromorphic with pol...

متن کامل

SHIFT OPERATOR FOR PERIODICALLY CORRELATED PROCESSES

The existence of shift for periodically correlated processes and its boundedness are investigated. Spectral criteria for these non-stationary processes to have such shifts are obtained.

متن کامل

Hyperbolic Structure Arising from a Knot Invariant

We study the knot invariant based on the quantum dilogarithm function. This invariant can be regarded as a non-compact analogue of Kashaev’s invariant, or the colored Jones invariant, and is defined by an integral form. The 3-dimensional picture of our invariant originates from the pentagon identity of the quantum dilogarithm function, and we show that the hyperbolicity consistency conditions i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994